首页> 外文OA文献 >N-acetylglucosamine 6-Phosphate Deacetylase (nagA) Is Required for N-acetyl Glucosamine Assimilation in Gluconacetobacter xylinus
【2h】

N-acetylglucosamine 6-Phosphate Deacetylase (nagA) Is Required for N-acetyl Glucosamine Assimilation in Gluconacetobacter xylinus

机译:需要N-乙酰氨基葡萄糖6-磷酸脱乙酰酶(nagA) N-乙酰氨基葡萄糖同化在葡糖杆菌中。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tetr; named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species.
机译:氨基糖(N-乙酰氨基葡萄糖; GlcNAc和氨基葡萄糖; Gln)的代谢途径至关重要,并且在所有三个生命王国(即微生物,植物和动物)中都基本上保持保守。摄取后,这些氨基酸在细胞质中被磷酸激酶磷酸化,随后被N-乙酰氨基葡糖6-磷酸脱乙酰酶(nagA)脱乙酰化,生成6-磷酸葡糖胺和乙酸盐,这是GlcNAc同化和氨基-糖化的第一步。糖核苷酸的生物合成。在这里,我们报告了编码部分nagA基因的DNA片段的克隆及其对纤维素生产细菌xylinus(正式称为木醋杆菌)中氨基糖代谢的影响。为此,通过同源重组通过插入四环素抗性基因(nagA :: tetr;命名为ΔnagA)来破坏nagA。与葡萄糖喂养条件相比,nagA突变体完全抑制了UDP-GlcNAc的合成和细菌生长(由于缺乏GlcNAc的利用)。有趣的是,在GlcNAc进料条件下,这种抑制作用不会损害纤维素的生产效率及其分子组成。我们得出的结论是,nagA在G.xylinus的GlcNAc同化中起着至关重要的作用,因此在存在GlcNAc作为碳源的情况下,细菌的生长和存活是必需的。此外,木霉菌似乎具有与其他相关细菌相同的分子机制,用于由GlcNAc前体合成UDP-GlcNAc。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号